Quantum Physics
[Submitted on 10 Jun 2024]
Title:Feasibility of accelerating homogeneous catalyst discovery with fault-tolerant quantum computers
View PDF HTML (experimental)Abstract:The industrial manufacturing of chemicals consumes a significant amount of energy and raw materials. In principle, the development of new catalysts could greatly improve the efficiency of chemical production. However, the discovery of viable catalysts can be exceedingly challenging because it is difficult to know the efficacy of a candidate without experimentally synthesizing and characterizing it. This study explores the feasibility of using fault-tolerant quantum computers to accelerate the discovery of homogeneous catalysts for nitrogen fixation, an industrially important chemical process. It introduces a set of ground-state energy estimation problems representative of calculations needed for the discovery of homogeneous catalysts and analyzes them on three dimensions: economic utility, classical hardness, and quantum resource requirements. For the highest utility problem considered, two steps of a catalytic cycle for the generation of cyanate anion from dinitrogen, the economic utility of running these computations is estimated to be $200,000, and the required runtime for double-factorized phase estimation on a fault-tolerant superconducting device is estimated under conservative assumptions to be 139,000 QPU-hours. The computational cost of an equivalent DMRG calculation is estimated to be about 400,000 CPU-hours. These results suggest that, with continued development, it will be feasible for fault-tolerant quantum computers to accelerate the discovery of homogeneous catalysts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.