Physics > Physics and Society
[Submitted on 14 Jun 2024 (v1), last revised 4 Mar 2025 (this version, v2)]
Title:Epidemic-induced local awareness behavior inferred from surveys and genetic sequence data
View PDF HTML (experimental)Abstract:Behavior-disease models suggest that pandemics can be contained cost-effectively if individuals take preventive actions when disease prevalence rises among their close contacts. However, assessing local awareness behavior in real-world datasets remains a challenge. Through the analysis of mutation patterns in clinical genetic sequence data, we propose an efficient approach to quantify the impact of local awareness by identifying superspreading events and assigning containment scores to them.
We validate the proposed containment score as a proxy for local awareness in simulation experiments, and find that it was correlated positively with policy stringency during the COVID-19 pandemic. Finally, we observe a temporary drop in the containment score during the Omicron wave in the United Kingdom, matching a survey experiment we carried out in Hungary during the corresponding period of the pandemic. Our findings bring important insight into the field of awareness modeling through the analysis of large-scale genetic sequence data, one of the most promising data sources in epidemics research.
Submission history
From: Gergely Odor [view email][v1] Fri, 14 Jun 2024 12:46:35 UTC (4,573 KB)
[v2] Tue, 4 Mar 2025 19:14:12 UTC (2,500 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.