Physics > Physics and Society
[Submitted on 3 Jul 2024 (v1), last revised 2 Sep 2024 (this version, v2)]
Title:Dynamics of An Information Theoretic Analog of Two Masses on a Spring
View PDF HTML (experimental)Abstract:In this short communication we investigate an information theoretic analogue of the classic two masses on spring system, arising from a physical interpretation of Friston's free energy principle in the theory of learning in a system of agents. Using methods from classical mechanics on manifolds, we define a kinetic energy term using the Fisher metric on distributions and a potential energy function defined in terms of stress on the agents' beliefs. The resulting Lagrangian (Hamiltonian) produces a variation of the classic DeGroot dynamics. In the two agent case, the potential function is defined using the Jeffrey's divergence and the resulting dynamics are characterized by a non-linear spring. These dynamics produce trajectories that resemble flows on tori but are shown numerically to produce chaos near the boundary of the space. We then investigate persuasion as an information theoretic control problem where analysis indicates that manipulating peer pressure with a fixed target is a more stable approach to altering an agent's belief than providing a slowly changing belief state that approaches the target.
Submission history
From: Christopher Griffin [view email][v1] Wed, 3 Jul 2024 12:47:16 UTC (284 KB)
[v2] Mon, 2 Sep 2024 14:10:55 UTC (376 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.