Condensed Matter > Statistical Mechanics
[Submitted on 10 Jul 2024]
Title:Causal Leverage Density: A General Approach to Semantic Information
View PDF HTML (experimental)Abstract:I introduce a new approach to semantic information based upon the influence of erasure operations (interventions) upon distributions of a system's future trajectories through its phase space. Semantic (meaningful) information is distinguished from syntactic information by the property of having some intrinsic causal power on the future of a given system. As Shannon famously stated, syntactic information is a simple property of probability distributions (the elementary Shannon expression), or correlations between two subsystems and thus does not tell us anything about the meaning of a given message. Kolchinsky & Wolpert (2018) introduced a powerful framework for computing semantic information, which employs interventions upon the state of a system (either initial or dynamic) to erase syntactic information that might influence the viability of a subsystem (such as an organism in an environment). In this work I adapt this framework such that rather than using the viability of a subsystem, we simply observe the changes in future trajectories through a system's phase space as a result of informational interventions (erasures or scrambling). This allows for a more general formalisation of semantic information that does not assume a primary role for the viability of a subsystem (to use examples from Kolchinsky & Wolpert (2018), a rock, a hurricane, or a cell). Many systems of interest have a semantic component, such as a neural network, but may not have such an intrinsic connection to viability as living organisms or dissipative structures. Hence this simple approach to semantic information could be applied to any living, non-living or technological system in order to quantify whether a given quantity of syntactic information within it also has semantic or causal power.
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.