Quantitative Biology > Populations and Evolution
[Submitted on 16 Jul 2024 (v1), last revised 24 Feb 2025 (this version, v3)]
Title:The evolution of complexity and the transition to biochemical life
View PDFAbstract:While modern physics and biology satisfactorily explain the passage from the Big Bang to the formation of Earth and the first cells to present-day life, respectively, the origins of biochemical life still remain an open question. Since life, as we know it, requires extremely long genetic polymers, any answer to the question must explain how an evolving system of polymers of ever-increasing length could come about on a planet that otherwise consisted only of small molecular building blocks. In this work, we show that, under realistic constraints, an abstract polymer model can exhibit dynamics such that attractors in the polymer population space with a higher average polymer length are also more probable. We generalize from the model and formalize the notions of complexity and evolution for chemical reaction networks with multiple attractors. The complexity of a species is defined as the minimum number of reactions needed to produce it from a set of building blocks, which in turn is used to define a measure of complexity for an attractor. A transition between attractors is considered to be a progressive evolution if the attractor with the higher probability also has a higher complexity. In an environment where only monomers are readily available, the attractor with a higher average polymer length is more complex. Thus, our abstract polymer model can exhibit progressive evolution for a range of thermodynamically plausible rate constants. We also formalize criteria for open-ended and historically-contingent evolution and explain the role of autocatalysis in obtaining them. Our work provides a basis for searching for prebiotically plausible scenarios in which long polymers can emerge and yield populations with even longer polymers.
Submission history
From: Praful Gagrani [view email][v1] Tue, 16 Jul 2024 13:49:39 UTC (2,569 KB)
[v2] Sat, 2 Nov 2024 12:39:48 UTC (6,311 KB)
[v3] Mon, 24 Feb 2025 06:32:01 UTC (6,291 KB)
Current browse context:
q-bio.PE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.