Physics > Applied Physics
[Submitted on 29 Jul 2024]
Title:Strongly Nonlinear Wave Propagation in Elasto-plastic Metamaterials: Low-order Dynamic Modeling
View PDF HTML (experimental)Abstract:Nonlinear elastic metamaterials are known to support a variety of dynamic phenomena that enhance our capacity to manipulate elastic waves. Since these properties stem from complex, subwavelength geometry, full-scale dynamic simulations are often prohibitively expensive at scales of interest. Prior studies have therefore utilized low-order effective medium models, such as discrete mass-spring lattices, to capture essential properties in the long-wavelength limit. While models of this type have been successfully implemented for a wide variety of nonlinear elastic systems, they have predominantly considered dynamics depending only on the instantaneous kinematics of the lattice, neglecting history-dependent effects, such as wear and plasticity. To address this limitation, the present study develops a lattice-based modeling framework for nonlinear elastic metamaterials undergoing plastic deformation. Due to the history- and rate-dependent nature of plasticity, the framework generally yields a system of differential-algebraic equations whose computational cost is significantly greater than an elastic system of comparable size. We demonstrate the method using several models inspired by classical lattice dynamics and continuum plasticity theory, and explore means to obtain empirical plasticity models for general geometries.
Current browse context:
physics.app-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.