Condensed Matter > Quantum Gases
[Submitted on 31 Jul 2024]
Title:Nonlinearity-induced dynamical self-organized twisted-bilayer lattices in Bose-Einstein condensates
View PDF HTML (experimental)Abstract:Creating crystal bilayers twisted with respect to each other would lead to large periodic supercell structures, which can support a wide range of novel electron correlated phenomena, where the full understanding is still under debate. Here, we propose a new scheme to realize a nonlinearity-induced dynamical self-organized twisted-bilayer lattice in an atomic Bose-Einstein condensate (BEC). The key idea here is to utilize the nonlinear effect from the intrinsic atomic interactions to couple different layers and induce a dynamical self-organized supercell structure, dramatically distinct from the conventional wisdom to achieve the static twisted-bilayer lattices. To illustrate that, we study the dynamics of a two-component BEC and show that the nonlinear interaction effect naturally emerged in the Gross-Pitaevskii equation of interacting bosonic ultracold atoms can dynamically induce both periodic (commensurable) and aperiodic (incommensurable) moiré structures. One of the interesting moiré phenomena, i.e., the flat-band physics, is shown through investigating the dynamics of the wave packet of BEC. Our proposal can be implemented using available state-of-the-art experimental techniques and reveal a profound connection between the nonlinearity and twistronics in cold atom quantum simulators.
Current browse context:
cond-mat.quant-gas
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.