Condensed Matter > Materials Science
[Submitted on 31 Jul 2024]
Title:Unsteady slip pulses under spatially-varying prestress
View PDF HTML (experimental)Abstract:It was recently established that self-healing slip pulses under uniform prestress $\tau_b$ are unstable frictional rupture modes, i.e., they either slowly expand/decay with time t. Furthermore, their dynamics were shown to follow a reduced-dimensionality description corresponding to a special $L(c)$ line in a plane defined by the pulse propagation velocity $c(t)$ and size $L(t)$. Yet, uniform prestress is rather the exception than the rule in natural faults. We study the effects of a spatially-varying prestress $\tau_b(x)$ on 2D slip pulses, initially generated under a uniform $\tau_b$ along a rate-and-state friction fault. We consider periodic and constant-gradient prestress $\tau_b(x)$ around the reference uniform $\tau_b$. For a periodic $\tau_b(x)$, pulses either sustain and form quasi-limit cycles in the $L-c$ plane or decay predominantly monotonically along the $L(c)$ line, depending on the instability index of the initial pulse and the properties of the periodic $\tau_b(x)$. For a constant-gradient $\tau_b(x)$, expanding/decaying pulses closely follow the $L(c)$ line, with systematic shifts determined by the sign and magnitude of the gradient. We also find that a spatially-varying $\tau_b(x)$ can revert the expanding/decaying nature of the initial reference pulse. Finally, we show that a constant-gradient $\tau_b(x)$, of sufficient magnitude and specific sign, can lead to the nucleation of a back-propagating rupture at the healing tail of the initial pulse, generating a bilateral crack-like rupture. This pulse-to-crack transition, along with the above-described effects, demonstrate that rich rupture dynamics merge from a simple, nonuniform prestress. Furthermore, we show that as long as pulses exist, their dynamics are related to the special $L(c)$ line, providing an effective, reduced-dimensionality description of unsteady slip pulses under spatially-varying prestress.
Submission history
From: Eran Bouchbinder [view email][v1] Wed, 31 Jul 2024 11:53:29 UTC (1,006 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.