Quantum Physics
[Submitted on 5 Aug 2024 (v1), last revised 9 Dec 2024 (this version, v2)]
Title:Quasi-classical Limit of a Spin Coupled to a Reservoir
View PDF HTML (experimental)Abstract:A spin (qubit) is in contact with a bosonic reservoir. The state of the reservoir contains a parameter {\varepsilon} interpolating between quantum and classical reservoir features. We derive the explicit expression for the time-dependent reduced spin density matrix, valid for all values of {\varepsilon} and for energy conserving interactions. We study decoherence and markovianity properties. Our main finding is that the spin decoherence is enhanced (full decoherence) when the spin is coupled to quantum reservoir states while it is dampened (partial decoherence) when coupled to classical reservoir states. The markovianity properties depend in a subtle way on the classicality parameter {\varepsilon} and on the finer details of the spin-reservoir interaction. We further examine scattering and periodicity properties for energy exchange interactions.
Submission history
From: Michele Fantechi [view email][v1] Mon, 5 Aug 2024 14:34:57 UTC (2,945 KB)
[v2] Mon, 9 Dec 2024 17:46:31 UTC (1,815 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.