Statistics > Methodology
[Submitted on 17 Sep 2024 (v1), last revised 27 Nov 2024 (this version, v2)]
Title:Poisson and Gamma Model Marginalisation and Marginal Likelihood calculation using Moment-generating Functions
View PDF HTML (experimental)Abstract:We present a new analytical method to derive the likelihood function that has the population of parameters marginalised out in Bayesian hierarchical models. This method is also useful to find the marginal likelihoods in Bayesian models or in random-effect linear mixed models. The key to this method is to take high-order (sometimes fractional) derivatives of the prior moment-generating function if particular existence and differentiability conditions hold.
In particular, this analytical method assumes that the likelihood is either Poisson or gamma. Under Poisson likelihoods, the observed Poisson count determines the order of the derivative. Under gamma likelihoods, the shape parameter, which is assumed to be known, determines the order of the fractional derivative.
We also present some examples validating this new analytical method.
Submission history
From: Si-Yang Li [view email][v1] Tue, 17 Sep 2024 13:19:02 UTC (368 KB)
[v2] Wed, 27 Nov 2024 16:52:22 UTC (393 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.