Computer Science > Sound
[Submitted on 1 Nov 2024]
Title:Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM
View PDF HTML (experimental)Abstract:The rapid development of large language models has brought many new smart applications, especially the excellent multimodal human-computer interaction in GPT-4o has brought impressive experience to users. In this background, researchers have proposed many multimodal LLMs that can achieve speech-to-speech dialogue recently. In this paper, we propose a speech-text multimodal LLM architecture called Freeze-Omni. Our main contribution is the speech input and output modalities can connected to the LLM while keeping the LLM frozen throughout the training process. We designed 3-stage training strategies both for the modeling of speech input and output, enabling Freeze-Omni to obtain speech-to-speech dialogue ability using text-speech paired data (such as ASR and TTS data) and only 60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively ensure that the intelligence of the Freeze-Omni in the speech modality is at the same level compared with that in the text modality of its backbone LLM, while the end-to-end latency of the spoken response achieves a low level. In addition, we also designed a method to achieve duplex dialogue ability through multi-task training, making Freeze-Omni have a more natural style of dialogue ability between the users. Freeze-Omni mainly provides a possibility for researchers to conduct multimodal LLM under the condition of a frozen LLM, avoiding various impacts caused by the catastrophic forgetting of LLM caused by fewer data and training resources.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.