Nonlinear Sciences > Adaptation and Self-Organizing Systems
[Submitted on 7 Nov 2024]
Title:A dynamical model of platform choice and online segregation
View PDF HTML (experimental)Abstract:In order to truly understand how social media might shape online discourses or contribute to societal polarization, we need refined models of platform choice, that is: models that help us understand why users prefer one social media platform over another. This study develops a dynamic model of platform selection, extending Social Feedback Theory by incorporating multi-agent reinforcement learning to capture how user decisions are shaped by past rewards across different platforms. A key parameter ($\mu$) in the model governs users' tendencies to either seek approval from like-minded peers or engage with opposing views. Our findings reveal that online environments can evolve into suboptimal states characterized by polarized, strongly opinionated echo chambers, even when users prefer diverse perspectives. Interestingly, this polarizing state coexists with another equilibrium, where users gravitate toward a single dominant platform, marginalizing other platforms into extremity. Using agent-based simulations and dynamical systems analysis, our model underscores the complex interplay of user preferences and platform dynamics, offering insights into how digital spaces might be better managed to foster diverse discourse.
Current browse context:
nlin.AO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.