Nonlinear Sciences > Pattern Formation and Solitons
[Submitted on 8 Nov 2024]
Title:Mach reflection and expansion of two-dimensional dispersive shock waves
View PDF HTML (experimental)Abstract:The oblique collisions and dynamical interference patterns of two-dimensional dispersive shock waves are studied numerically and analytically via the temporal dynamics induced by wedge-shaped initial conditions for the Kadomtsev-Petviashvili II equation. Various asymptotic wave patterns are identified, classified and characterized in terms of the incidence angle and the amplitude of the initial step, which can give rise to either subcritical or supercritical configurations, including the generalization to dispersive shock waves of the Mach reflection and expansion of viscous shocks and line solitons. An eightfold amplification of the amplitude of an obliquely incident flow upon a wall at the critical angle is demonstrated.
Current browse context:
nlin.PS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.