Quantum Physics
[Submitted on 13 Nov 2024 (v1), last revised 19 Nov 2024 (this version, v2)]
Title:Quantum Time Travel Revisited: Noncommutative Möbius Transformations and Time Loops
View PDF HTML (experimental)Abstract:We extend the theory of quantum time loops introduced by Greenberger and Szovil [1] from the scalar situation (where paths have just an associated complex amplitude) to the general situation where the time traveling system has multi-dimensional underlying Hilbert space. The main mathematical tool which emerges is the noncommutative M\{o}bius Transformation and this affords a formalism similar to the modular structure well known to feedback control problems. We argue that a sum-over-all-paths approach may be carried out in the scalar case, but quickly becomes unwieldy in the general case. It is natural to replace the beamsplitters of [1] with more general components having their own quantum structure, in which case the theory starts to resemble the quantum feedback networks theory for open quantum optical models and indeed we exploit this to look at more realistic physical models of time loops. We analyze some Grandfather paradoxes in the new setting
Submission history
From: John Gough [view email][v1] Wed, 13 Nov 2024 11:43:08 UTC (457 KB)
[v2] Tue, 19 Nov 2024 23:00:23 UTC (456 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.