Mathematics > Numerical Analysis
[Submitted on 14 Nov 2024]
Title:Convergence rates of Landweber-type methods for inverse problems in Banach spaces
View PDF HTML (experimental)Abstract:Landweber-type methods are prominent for solving ill-posed inverse problems in Banach spaces and their convergence has been well-understood. However, how to derive their convergence rates remains a challenging open question. In this paper, we tackle the challenge of deriving convergence rates for Landweber-type methods applied to ill-posed inverse problems, where forward operators map from a Banach space to a Hilbert space. Under a benchmark source condition, we introduce a novel strategy to derive convergence rates when the method is terminated by either an {\it a priori} stopping rule or the discrepancy principle. Our results offer substantial flexibility regarding step sizes, by allowing the use of variable step sizes. By extending the strategy to deal with the stochastic mirror descent method for solving nonlinear ill-posed systems with exact data, under a benchmark source condition we also obtain an almost sure convergence rate in terms of the number of iterations.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.