Computer Science > Hardware Architecture
[Submitted on 14 Nov 2024]
Title:Architectural Exploration of Application-Specific Resonant SRAM Compute-in-Memory (rCiM)
View PDF HTML (experimental)Abstract:While general-purpose computing follows Von Neumann's architecture, the data movement between memory and processor elements dictates the processor's performance. The evolving compute-in-memory (CiM) paradigm tackles this issue by facilitating simultaneous processing and storage within static random-access memory (SRAM) elements. Numerous design decisions taken at different levels of hierarchy affect the figure of merits (FoMs) of SRAM, such as power, performance, area, and yield. The absence of a rapid assessment mechanism for the impact of changes at different hierarchy levels on global FoMs poses a challenge to accurately evaluating innovative SRAM designs. This paper presents an automation tool designed to optimize the energy and latency of SRAM designs incorporating diverse implementation strategies for executing logic operations within the SRAM. The tool structure allows easy comparison across different array topologies and various design strategies to result in energy-efficient implementations. Our study involves a comprehensive comparison of over 6900+ distinct design implementation strategies for EPFL combinational benchmark circuits on the energy-recycling resonant compute-in-memory (rCiM) architecture designed using TSMC 28 nm technology. When provided with a combinational circuit, the tool aims to generate an energy-efficient implementation strategy tailored to the specified input memory and latency constraints. The tool reduces 80.9% of energy consumption on average across all benchmarks while using the six-topology implementation compared to baseline implementation of single-macro topology by considering the parallel processing capability of rCiM cache size ranging from 4KB to 192KB.
Current browse context:
cs.AR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.