Mathematics > Probability
[Submitted on 14 Nov 2024 (v1), last revised 15 Nov 2024 (this version, v2)]
Title:A Kesten Stigum theorem for Galton-Watson processes with infinitely many types in a random environment
View PDF HTML (experimental)Abstract:In this paper, we study a Galton-Watson process $(Z_n)$ with infinitely many types in a random ergodic environment $\bar{\xi}=(\xi_n)_{n\geq 0}$. We focus on the supercritical regime of the process, where the quenched average of the size of the population grows exponentially fast to infinity. We work under Doeblin-type assumptions coming from a previous paper, which ensure that the quenched mean semi group of $(Z_n)$ satisfies some ergodicity property and admits a $\bar{\xi}$-measurable family of space-time harmonic functions. We use these properties to derive an associated nonnegative martingale $(W_n)$. Under a $L\log(L)^{1+\varepsilon}$-integrabilty assumption on the offspring distribution, we prove that the almost sure limit $W$ of the martingale $(W_n)$ is not degenerate. Assuming some uniform $L^2$-integrability of the offspring distribution, we prove that conditionally on $\{W>0\}$, at a large time $n$, both the size of the population and the distribution of types correspond to those of the quenched mean of the population $\mathbb{E}[Z_n|\bar{\xi}, Z_0]$.
We finally introduce an example of a process modelling a population with a discrete age structure. In this context, we provide more tractable criterions which guarantee our various assumptions are met.
Submission history
From: Maxime Ligonniere [view email][v1] Thu, 14 Nov 2024 17:56:41 UTC (37 KB)
[v2] Fri, 15 Nov 2024 07:26:47 UTC (37 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.