High Energy Physics - Theory
[Submitted on 14 Nov 2024]
Title:A physical basis for cosmological correlators from cuts
View PDFAbstract:Significant progress has been made in our understanding of the analytic structure of FRW wavefunction coefficients, facilitated by the development of efficient algorithms to derive the differential equations they satisfy. Moreover, recent findings indicate that the twisted cohomology of the associated hyperplane arrangement defining FRW integrals overestimates the number of integrals required to define differential equations for the wavefunction coefficient. We demonstrate that the associated dual cohomology is automatically organized in a way that is ideal for understanding and exploiting the cut/residue structure of FRW integrals. Utilizing this understanding, we develop a systematic approach to organize compatible sequential residues, which dictates the physical subspace of FRW integrals for any $n$-site, $\ell$-loop graph. In particular, the physical subspace of tree-level FRW wavefunction coefficients is populated by differential forms associated to cuts/residues that factorize the integrand of the wavefunction coefficient into only flat space amplitudes. After demonstrating the validity of our construction using intersection theory, we develop simple graphical rules for cut tubings that enumerate the space of physical cuts and, consequently, differential forms without any calculation.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.