Mathematics > Operator Algebras
[Submitted on 15 Nov 2024]
Title:Self-similar groupoid actions on k-graphs, and invariance of K-theory for cocycle homotopies
View PDF HTML (experimental)Abstract:We establish conditions under which an inclusion of finitely aligned left-cancellative small categories induces inclusions of twisted C*-algebras. We also present an example of an inclusion of finitely aligned left-cancellative monoids that does not induce a homomorphism even between (untwisted) Toeplitz algebras. We prove that the twisted C*-algebras of a jointly faithful self-similar action of a countable discrete amenable groupoid on a row-finite k-graph with no sources, with respect to homotopic cocycles, have isomorphic K-theory.
Current browse context:
math.OA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.