Quantitative Biology > Quantitative Methods
[Submitted on 15 Nov 2024]
Title:Two-step registration method boosts sensitivity in longitudinal fixel-based analyses
View PDF HTML (experimental)Abstract:Longitudinal analyses are increasingly used in clinical studies as they allow the study of subtle changes over time within the same subjects. In most of these studies, it is necessary to align all the images studied to a common reference by registering them to a template. In the study of white matter using the recently developed fixel-based analysis (FBA) method, this registration is important, in particular because the fiber bundle cross-section metric is a direct measure of this registration. In the vast majority of longitudinal FBA studies described in the literature, sessions acquired for a same subject are directly independently registered to the template. However, it has been shown in T1-based morphometry that a 2-step registration through an intra-subject average can be advantageous in longitudinal analyses. In this work, we propose an implementation of this 2-step registration method in a typical longitudinal FBA aimed at investigating the evolution of white matter changes in Alzheimer's disease (AD). We compared at the fixel level the mean absolute effect and standard deviation yielded by this registration method and by a direct registration, as well as the results obtained with each registration method for the study of AD in both fixelwise and tract-based analyses. We found that the 2-step method reduced the variability of the measurements and thus enhanced statistical power in both types of analyses.
Current browse context:
q-bio.QM
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.