Electrical Engineering and Systems Science > Systems and Control
[Submitted on 15 Nov 2024]
Title:Observer-Based Safety Monitoring of Nonlinear Dynamical Systems with Neural Networks via Quadratic Constraint Approach
View PDF HTML (experimental)Abstract:The safety monitoring for nonlinear dynamical systems with embedded neural network components is addressed in this paper. The interval-observer-based safety monitor is developed consisting of two auxiliary neural networks derived from the neural network components of the dynamical system. Due to the presence of nonlinear activation functions in neural networks, we use quadratic constraints on the global sector to abstract the nonlinear activation functions in neural networks. By combining a quadratic constraint approach for the activation function with Lyapunov theory, the interval observer design problem is transformed into a series of quadratic and linear programming feasibility problems to make the interval observer operate with the ability to correctly estimate the system state with estimation errors within acceptable limits. The applicability of the proposed method is verified by simulation of the lateral vehicle control system.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.