Computer Science > Machine Learning
[Submitted on 14 Nov 2024]
Title:Artificial Intelligence for Infectious Disease Prediction and Prevention: A Comprehensive Review
View PDF HTML (experimental)Abstract:Artificial Intelligence (AI) and infectious diseases prediction have recently experienced a common development and advancement. Machine learning (ML) apparition, along with deep learning (DL) emergence, extended many approaches against diseases apparition and their spread. And despite their outstanding results in predicting infectious diseases, conflicts appeared regarding the types of data used and how they can be studied, analyzed, and exploited using various emerging methods. This has led to some ongoing discussions in the field. This research aims not only to provide an overview of what has been accomplished, but also to highlight the difficulties related to the types of data used, and the learning methods applied for each research objective. It categorizes these contributions into three areas: predictions using Public Health Data to prevent the spread of a transmissible disease within a region; predictions using Patients' Medical Data to detect whether a person is infected by a transmissible disease; and predictions using both Public and patient medical data to estimate the extent of disease spread in a population. The paper also critically assesses the potential of AI and outlines its limitations in infectious disease management.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.