Electrical Engineering and Systems Science > Systems and Control
[Submitted on 17 Nov 2024]
Title:Immersion of General Nonlinear Systems Into State-Affine Ones for the Design of Generalized Parameter Estimation-Based Observers: A Simple Algebraic Procedure
View PDFAbstract:Generalized parameter estimation-based observers have proven very successful to deal with systems described in state-affine form. In this paper, we enlarge the domain of applicability of this method proposing an algebraic procedure to immerse} an $n$-dimensional general nonlinear system into and $n_z$-dimensional system in state affine form, with $n_z>n$. First, we recall the necessary and sufficient condition for the solution of the general problem, which requires the solution of a partial differential equation that, moreover, has to satisfy a restrictive injectivity condition. Given the complexity of this task we propose an alternative simple algebraic method to identify the required dynamic extension and coordinate transformation, a procedure that, as shown in the paper, is rather natural for physical systems. We illustrate the method with some academic benchmark examples from observer theory literature -- that, in spite of their apparent simplicity, are difficult to solve with the existing methods -- as well as several practically relevant physical examples.
Submission history
From: José Guadalupe Romero Velazquez [view email][v1] Sun, 17 Nov 2024 05:03:40 UTC (865 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.