Mathematics > Representation Theory
[Submitted on 18 Nov 2024]
Title:Interval Multiplicities of Persistence Modules
View PDF HTML (experimental)Abstract:For any persistence module $M$ over a finite poset $\mathbf{P}$, and any interval $I$ in $\mathbf{P}$, we give a formula of the multiplicity $d_M(V_I)$ of the interval module $V_I$ in the indecomposable decomposition of $M$ in terms of structure linear maps of the module $M$. This makes it possible to compute the maximal interval-decomposable direct summand of $M$, which gives us a way to decide whether $M$ is interval-decomposable or not. Moreover, the formula tells us essential morphisms of $\mathbf{P}$ that are necessary to compute the multiplicity $d_M(V_I)$. This suggests us some poset morphism $\zeta \colon Z \to \mathbf{P}$ such that the induced restriction functor $R \colon \operatorname{mod} \mathbf{P} \to \operatorname{mod} Z$ has the property that the multiplicity $d:= d_{R(M)}(R(V_I))$ is equal to $d_M(V_I)$. If $Z$ can be taken as a poset of Dynkin type $\mathbb{A}$ as in the bipath case, then the calculation of the multiplicity $d$ can be done more efficiently, starting from the filtration level of topological spaces. Thus this even makes it unnecessary to compute the structure linear maps of $M$.
Current browse context:
math.RT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.