Quantum Physics
[Submitted on 18 Nov 2024 (v1), last revised 19 Nov 2024 (this version, v2)]
Title:Logical computation demonstrated with a neutral atom quantum processor
View PDF HTML (experimental)Abstract:Transitioning from quantum computation on physical qubits to quantum computation on encoded, logical qubits can improve the error rate of operations, and will be essential for realizing valuable quantum computational advantages. Using a neutral atom quantum processor with 256 qubits, each an individual Ytterbium atom, we demonstrate the entanglement of 24 logical qubits using the distance-two [[4,2,2]] code, simultaneously detecting errors and correcting for lost qubits. We also implement the Bernstein-Vazirani algorithm with up to 28 logical qubits encoded in the [[4,1,2]] code, showing better-than-physical error rates. We demonstrate fault-tolerant quantum computation in our approach, guided by the proposal of Gottesman (2016), by performing repeated loss correction for both structured and random circuits encoded in the [[4,2,2]] code. Finally, since distance-two codes can correct qubit loss, but not other errors, we show repeated loss and error correction using the distance-three [[9,1,3]] Bacon-Shor code. These results begin to clear a path for achieving scientific quantum advantage with a programmable neutral atom quantum processor.
Submission history
From: Ben Reichardt [view email][v1] Mon, 18 Nov 2024 18:39:23 UTC (6,673 KB)
[v2] Tue, 19 Nov 2024 18:55:32 UTC (6,386 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.