Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 18 Nov 2024]
Title:Investigating the galaxy-halo connection of DESI Emission-Line Galaxies with SHAMe-SF
View PDFAbstract:The Dark Energy Spectroscopic Instrument (DESI) survey is mapping the large-scale distribution of millions of Emission Line Galaxies (ELGs) over vast cosmic volumes to measure the growth history of the Universe. However, compared to Luminous Red Galaxies (LRGs), very little is known about the connection of ELGs with the underlying matter field. In this paper, we employ a novel theoretical model, SHAMe-SF, to infer the connection between ELGs and their host dark matter subhaloes. SHAMe-SF is a version of subhalo abundance matching that incorporates prescriptions for multiple processes, including star formation, tidal stripping, environmental correlations, and quenching. We analyse the public measurements of the projected and redshift-space ELGs correlation functions at $z=1.0$ and $z=1.3$ from DESI One Percent data release, which we fit over a broad range of scales $r \in [0.1, 30]/h^{-1}$Mpc to within the statistical uncertainties of the data. We also validate the inference pipeline using two mock DESI ELG catalogues built from hydrodynamical (TNG300) and semi-analytical galaxy formation models (\texttt{L-Galaxies}). SHAMe-SF is able to reproduce the clustering of DESI-ELGs and the mock DESI samples within statistical uncertainties. We infer that DESI ELGs typically reside in haloes of $\sim 10^{11.8}h^{-1}$M$_{\odot}$ when they are central, and $\sim 10^{12.5}h^{-1}$M$_{\odot}$ when they are a satellite, which occurs in $\sim$30 \% of the cases. In addition, compared to the distribution of dark matter within halos, satellite ELGs preferentially reside both in the outskirts and inside haloes, and have a net infall velocity towards the centre. Finally, our results show evidence of assembly bias and conformity.
Submission history
From: Sara Ortega-Martinez [view email][v1] Mon, 18 Nov 2024 18:48:45 UTC (6,552 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.