Physics > Fluid Dynamics
[Submitted on 18 Nov 2024]
Title:Large Eddy Simulation using Nonlinearly Stable Flux Reconstruction
View PDF HTML (experimental)Abstract:The performance of the nonlinearly stable flux reconstruction (NSFR) schemes for resolving subsonic viscous turbulent free-shear flows is investigated. The schemes are extensively verified for the direct numerical simulation (DNS) of the Taylor-Green Vortex (TGV) problem. Several under-resolved simulations of the TGV problem are conducted to assess the performance of NSFR for large eddy simulation that is implicitly filtered and fully implicit (ILES). Increasing the flux reconstruction correction parameter ensures that NSFR is stable and accurate for ILES while allowing for larger explicit time-steps. The entropy-stable schemes implemented with sum-factorization for tensor and Hadamard products are shown to be more cost-effective than classical DG with over-integration. The choice of the two-point (TP) numerical flux does not impact the solution and the use of standard eddy-viscosity-based sub-grid scale models does not yield improvements for the problem considered. From the DNS results, the pressure dilatation-based dissipation rate for the nonlinearly stable schemes is consistent with literature when computed from the kinetic energy (KE) budget terms, while spurious oscillations are seen when the term is directly computed. The magnitude of these oscillations is significantly lower for a collocated scheme and are effectively eliminated with the addition of Roe upwind dissipation to the TP numerical flux. Therefore, these oscillations are believed to be associated with the treatment of the face terms in nonlinearly stable schemes. It is shown that oversampling the velocity field is necessary for obtaining accurate turbulent KE (TKE) spectra and eliminates an apparent pile-up of TKE at the smallest resolved scales. Lastly, the TKE spectra for a decaying homogeneous isotropic turbulence case are in good agreement with experiment measurements and computational results in the literature.
Current browse context:
physics.flu-dyn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.