Mathematics > Numerical Analysis
[Submitted on 19 Nov 2024]
Title:Wavelet s-Wasserstein distances for 0 < s <= 1
View PDF HTML (experimental)Abstract:Motivated by classical harmonic analysis results characterizing Hölder spaces in terms of the decay of their wavelet coefficients, we consider wavelet methods for computing s-Wasserstein type distances. Previous work by Sheory (né Shirdhonkar) and Jacobs showed that, for 0 < s <= 1, the s-Wasserstein distance W_s between certain probability measures on Euclidean space is equivalent to a weighted l_1 difference of their wavelet coefficients. We demonstrate that the original statement of this equivalence is incorrect in a few aspects and, furthermore, fails to capture key properties of the W_s distance, such as its behavior under translations of probability measures. Inspired by this, we consider a variant of the previous wavelet distance formula for which equivalence (up to an arbitrarily small error) does hold for 0 < s < 1. We analyze the properties of this distance, one of which is that it provides a natural embedding of the s-Wasserstein space into a linear space. We conclude with several numerical simulations. Even though our theoretical result merely ensures that the new wavelet s-Wasserstein distance is equivalent to the classical W_s distance (up to an error), our numerical simulations show that the new wavelet distance succeeds in capturing the behavior of the exact W_s distance under translations and dilations of probability measures.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.