Mathematics > Analysis of PDEs
[Submitted on 19 Nov 2024]
Title:Optimal embedding results for fractional Sobolev spaces
View PDF HTML (experimental)Abstract:This paper deals with the fractional Sobolev spaces $W^{s, p}(\Omega)$, with $s\in (0, 1]$ and $p\in[1,+\infty]$. Here, we use the interpolation results in [4] to provide suitable conditions on the exponents $s$ and $p$ so that the spaces $W^{s, p}(\Omega)$ realize a continuous embedding when either $\Omega=\mathbb R^N$ or $\Omega$ is any open and bounded domain with Lipschitz boundary.
Our results enhance the classical continuous embedding and, when $\Omega$ is any open bounded domain with Lipschitz boundary, we also improve the classical compact embeddings.
All the results stated here are proved to be optimal. Also, our strategy does not require the use of Besov or other interpolation spaces.
Submission history
From: Caterina Sportelli [view email][v1] Tue, 19 Nov 2024 05:50:55 UTC (435 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.