General Relativity and Quantum Cosmology
[Submitted on 19 Nov 2024]
Title:Anisotropic gravastar as horizonless regular black hole spacetime and its images illuminated by thin accretion disk
View PDF HTML (experimental)Abstract:A connection between regular black holes and horizonless ultracompact objects was proposed in~\cite{Carballo-Rubio:2022nuj}. In this paper, we construct a model of a horizonless compact object, specifically an anisotropic gravastar with continuous pressure, that corresponds to regular black hole spacetime in the appropriate limit. The construction begins by modeling an equation of state that satisfies the anisotropic gravastar conditions and transitions to the de Sitter ($p=-\epsilon$) upon horizon formation. The spacetime structure is similar to the {\it Quantum Horizonless Compact Object} (QHCO) described in~\cite{Chen:2024ibc}. Within this model, we also generate images of the corresponding objects surrounded by a thin accretion disk. The resulting images reveal that assuming that the emitting matter exists only outside the object, the inner light ring structure closely resembles that of the horizonless configuration of a regular black hole and the QHCO, yet it exhibits a distinct light ring structure compared to the thin-shell gravastar model. However, the opposite occurs when emitting matter is taken into account inside the object.
Submission history
From: Muhammad Fauzi Fahmi [view email][v1] Tue, 19 Nov 2024 09:19:24 UTC (19,851 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.