Mathematical Physics
[Submitted on 19 Nov 2024]
Title:Trace formula for quantum chaotic systems with geometrical symmetries and spin
View PDF HTML (experimental)Abstract:We derive a Gutzwiller-type trace formula for quantum chaotic systems that accounts for both particle spin precession and discrete geometrical symmetries. This formula generalises previous results that were obtained either for systems with spin [1,2] or for systems with symmetries [3,4], but not for a combination of both. The derivation requires not only a combination of methodologies for these two settings, but also the treatment of new effects in the form of double groups and spin components of symmetry operations. The resulting trace formula expresses the level density of subspectra associated to irreducible representations of the group of unitary symmetries in terms of periodic orbits in the system's fundamental domain. We also derive a corresponding expression for the spectral determinant. In a follow-up paper [5] we will show that our formula allows to study the impact of geometrical symmetries and spin on spectral statistics.
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.