Quantum Physics
[Submitted on 19 Nov 2024]
Title:Variational learning of integrated quantum photonic circuits
View PDF HTML (experimental)Abstract:Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integrated photonic circuits, because they involve explicit decomposition of large quantum circuits into sequences of basic entangled gates, leading to an exponential decay of success probability due to the non-deterministic nature of photonic entangling gates. Here, we present a variational learning approach for designing quantum photonic circuits, which directly incorporates post-selection and elementary photonic elements into the training process. The complicated circuit is treated as a single nonlinear logical operator, and a unified design is discovered for it through variational learning. Engineering an integrated photonic chip with automated control, we adjust and optimize the internal parameters of the chip in real time for task-specific cost functions. We utilize a simple case of designing photonic circuits for a single ancilla CNOT gate with improved success rate to illustrate how our proposed approach works, and then apply the approach in the first demonstration of quantum stochastic simulation using integrated photonics.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.