Computer Science > Cryptography and Security
[Submitted on 19 Nov 2024]
Title:StrTune: Data Dependence-based Code Slicing for Binary Similarity Detection with Fine-tuned Representation
View PDF HTML (experimental)Abstract:Binary Code Similarity Detection (BCSD) is significant for software security as it can address binary tasks such as malicious code snippets identification and binary patch analysis by comparing code patterns. Recently, there has been a growing focus on artificial intelligence-based approaches in BCSD due to their scalability and generalization. Because binaries are compiled with different compilation configurations, existing approaches still face notable limitations when comparing binary similarity. First, BCSD requires analysis on code behavior, and existing work claims to extract semantic, but actually still makes analysis in terms of syntax. Second, directly extracting features from assembly sequences, existing work cannot address the issues of instruction reordering and different syntax expressions caused by various compilation configurations. In this paper, we propose StrTune, which slices binary code based on data dependence and perform slice-level fine-tuning. To address the first limitation, StrTune performs backward slicing based on data dependence to capture how a value is computed along the execution. Each slice reflects the collecting semantics of the code, which is stable across different compilation configurations. StrTune introduces flow types to emphasize the independence of computations between slices, forming a graph representation. To overcome the second limitation, based on slices corresponding to the same value computation but having different syntax representation, StrTune utilizes a Siamese Network to fine-tune such pairs, making their representations closer in the feature space.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.