High Energy Physics - Theory
[Submitted on 19 Nov 2024]
Title:Generalized Fefferman-Graham gauge and boundary Weyl structures
View PDF HTML (experimental)Abstract:In the framework of AdS/CFT correspondence, the Fefferman--Graham (FG) gauge offers a useful way to express asymptotically anti-de Sitter spaces, allowing a clear identification of their boundary structure. A known feature of this approach is that choosing a particular conformal representative for the boundary metric breaks explicitly the boundary scaling symmetry. Recent developments have shown that it is possible to generalize the FG gauge to restore boundary Weyl invariance by adopting the Weyl--Fefferman--Graham gauge. In this paper, we focus on three-dimensional gravity and study the emergence of a boundary Weyl structure when considering the most general AdS boundary conditions introduced by Grumiller and Riegler. We extend the holographic renormalization scheme to incorporate Weyl covariant quantities, identifying new subleading divergences appearing at the boundary. To address these, we introduce a new codimension-two counterterm, or corner term, that ensures the finiteness of the gravitational action. From here, we construct the quantum-generating functional, the holographic stress tensor, and compute the corresponding Weyl anomaly, showing that the latter is now expressed in a full Weyl covariant way. Finally, we discuss explicit applications to holographic integrable models and accelerating black holes. For the latter, we show that the new corner term plays a crucial role in the computation of the Euclidean on-shell action.
Submission history
From: Gabriel Arenas-Henriquez [view email][v1] Tue, 19 Nov 2024 13:55:41 UTC (64 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.