Electrical Engineering and Systems Science > Systems and Control
[Submitted on 19 Nov 2024]
Title:Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants
View PDF HTML (experimental)Abstract:Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in devices. Despite successful demonstrations of millimetric battery free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and magnetic field steering technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low power system on chip (SoC) powered by an ME film, a TX with a custom three channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves negative 161 dBm per Hz input referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90 degree rotation from the ideal position, our omnidirectional WPT system achieves 6.8x higher power transfer efficiency (PTE) than a single coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2 percent from using ideal control.
Current browse context:
eess.SY
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.