Mathematics > Optimization and Control
[Submitted on 19 Nov 2024]
Title:Problem-dependent convergence bounds for randomized linear gradient compression
View PDFAbstract:In distributed optimization, the communication of model updates can be a performance bottleneck. Consequently, gradient compression has been proposed as a means of increasing optimization throughput. In general, due to information loss, compression introduces a penalty on the number of iterations needed to reach a solution. In this work, we investigate how the iteration penalty depends on the interaction between compression and problem structure, in the context of non-convex stochastic optimization. We focus on linear compression schemes, where compression and decompression can be modeled as multiplication with a random matrix. We consider several distributions of matrices, among them random orthogonal matrices and matrices with random Gaussian entries. We find that in each case, the impact of compression on convergence can be quantified in terms of the norm of the Hessian of the objective, using a norm defined by the compression scheme. The analysis reveals that in certain cases, compression performance is related to low-rank structure or other spectral properties of the problem. In these cases, our bounds predict that the penalty introduced by compression is significantly reduced compared to worst-case bounds that only consider the compression level, ignoring problem data. We verify the theoretical findings on several optimization problems, including fine-tuning an image classification model.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.