Nonlinear Sciences > Chaotic Dynamics
[Submitted on 19 Nov 2024]
Title:Discussing a transition from bounded to unbounded energy in a time-dependent billiard
View PDF HTML (experimental)Abstract:We revisit a time-dependent, oval-shaped billiard to investigate a phase transition from bounded to unbounded energy growth. In the static case, the phase space exhibits a mixed structure. The chaotic sea in the static scenario leads to average energy growth for a time-dependent boundary. However, inelastic collisions between the particle and the boundary limit this unbounded energy increase. This transition displays properties similar to continuous phase transitions in statistical mechanics, including scale invariance, interrelated critical exponents governed by scaling laws, and an order parameter/susceptibility approaching zero/infinity at the transition. Furthermore, the system exhibits an elementary excitation that promotes particle diffusion and lacks topological defects that provide modifications to the probability distribution function.
Submission history
From: Diego Fregolent Mendes De Oliveira [view email][v1] Tue, 19 Nov 2024 23:38:53 UTC (695 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.