Computer Science > Computational Complexity
[Submitted on 20 Nov 2024]
Title:Strong XOR Lemma for Information Complexity
View PDF HTML (experimental)Abstract:For any $\{0,1\}$-valued function $f$, its \emph{$n$-folded XOR} is the function $f^{\oplus n}$ where $f^{\oplus n}(X_1, \ldots, X_n) = f(X_1) \oplus \cdots \oplus f(X_n)$. Given a procedure for computing the function $f$, one can apply a ``naive" approach to compute $f^{\oplus n}$ by computing each $f(X_i)$ independently, followed by XORing the outputs. This approach uses $n$ times the resources required for computing $f$.
In this paper, we prove a strong XOR lemma for \emph{information complexity} in the two-player randomized communication model: if computing $f$ with an error probability of $O(n^{-1})$ requires revealing $I$ bits of information about the players' inputs, then computing $f^{\oplus n}$ with a constant error requires revealing $\Omega(n) \cdot (I - 1 - o_n(1))$ bits of information about the players' inputs. Our result demonstrates that the naive protocol for computing $f^{\oplus n}$ is both information-theoretically optimal and asymptotically tight in error trade-offs.
Submission history
From: Pachara Sawettamalya [view email][v1] Wed, 20 Nov 2024 03:36:48 UTC (64 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.