Quantum Physics
[Submitted on 20 Nov 2024]
Title:Machine Learning for Arbitrary Single-Qubit Rotations on an Embedded Device
View PDF HTML (experimental)Abstract:Here we present a technique for using machine learning (ML) for single-qubit gate synthesis on field programmable logic for a superconducting transmon-based quantum computer based on simulated studies. Our approach is multi-stage. We first bootstrap a model based on simulation with access to the full statevector for measuring gate fidelity. We next present an algorithm, named adapted randomized benchmarking (ARB), for fine-tuning the gate on hardware based on measurements of the devices. We also present techniques for deploying the model on programmable devices with care to reduce the required resources. While the techniques here are applied to a transmon-based computer, many of them are portable to other architectures.
Submission history
From: Giuseppe Di Guglielmo [view email][v1] Wed, 20 Nov 2024 04:59:38 UTC (3,177 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.