General Relativity and Quantum Cosmology
[Submitted on 20 Nov 2024]
Title:The Image of Scalar Hairy Black Holes with Asymmetric Potential
View PDF HTML (experimental)Abstract:Black hole accretion disks are a fascinating topic in astrophysics, as they play a crucial role in several high-energy situations. This paper investigates the optical appearance of scalar hairy black holes (SHBHs) with asymmetric potential, a numerical solution obtained in Phys. Rev. D 73, 084002 (2006) and discussed in Phys.Rev.D 108 (2023) 4, 044020. Since the solution is spherically symmetric and surrounded by a thin accretion disk, we base our analysis on the work of J.~P. Lumininet (1979). We discuss the behavior of the effective potential for massive and massless particles, the innermost stable circular orbits (ISCO), and the photon sphere radius for different SHBHs. The study includes the plots of isoradial curves and spectral shifts arising from gravitational and Doppler shifts by considering direct and secondary images. Based on the work of Page and Thorne (1974), we also investigate the intrinsic intensity of radiation emitted by the disk at a given radius, which allows the calculation of the distribution of observed bolometric flux. We use the angular size of the shadow reported by the EHT for Sagittarius A* and M87* to constrain the SHBHs parameters.
Submission history
From: Carlos Albertho Benavides-Gallego [view email][v1] Wed, 20 Nov 2024 05:50:56 UTC (12,714 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.