General Relativity and Quantum Cosmology
[Submitted on 20 Nov 2024]
Title:Detectability of Lensed Gravitational Waves in Matched-Filtering Searches
View PDF HTML (experimental)Abstract:Gravitational lensing by compact, small-scale intervening masses causes frequency-dependent distortions to gravitational-wave events. The optimal signal-to-noise ratio (SNR) is often used as a proxy for the detectability of exotic signals in gravitational-wave searches. In reality, the detectability of such signals in a matched-filtering search requires comprehensive consideration of match-filtered SNR, signal-consistency test value, and other factors. In this work, we investigate for the first time the detectability of lensed gravitational waves from compact binary coalescences with a match-filtering search pipeline, GstLAL. Contrary to expectations from the optimal-SNR approximation approach, we show that the strength of a signal (i.e., higher optimal SNR) does not necessarily result in higher detectability. We also demonstrate that lensed gravitational waves with wave optics effects can suffer significantly, from $~90\%$ (unlensed) to $<1\%$ (lensed) detection efficiency, due to downranking by the signal-consistency test values. These findings stress the need to extend current template banks to effectively search for lensed gravitational waves and to reassess current constraints on compact dark matter scenarios.
Submission history
From: Juno Chun Lung Chan [view email][v1] Wed, 20 Nov 2024 06:15:06 UTC (13,383 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.