Mathematics > Analysis of PDEs
[Submitted on 20 Nov 2024]
Title:Nonlocal Hamilton-Jacobi Equations on a network with Kirchhoff type conditions
View PDFAbstract:In this article, we consider nonlocal Hamilton-Jacobi Equations on networks with Kirchhoff type conditions for the interior vertices and Dirichlet boundary conditions for the boundary ones: our aim is to provide general existence and comparison results in the case when the integro-differential operators are of order strictly less than 1. The main originality of these results is to allow these nonlocal terms to have contributions on several different edges of the network. The existence of Lipschitz continuous solutions is proved in two ways: either by using the vanishing viscosity method or by the usual Perron's method. The comparison proof relies on arguments introduced by Lions and Souganidis. We also introduce a notion of flux-limited solution, nonlocal analog to the one introduced by Imbert and Monneau, and prove that the solutions of the Kirchhoff problem are flux-limited solutions for a suitable flux-limiter. After treating in details the case when we only have one interior vertex, we extend our approach to treat general networks.
Submission history
From: Olivier Ley [view email] [via CCSD proxy][v1] Wed, 20 Nov 2024 08:37:16 UTC (58 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.