Quantum Physics
[Submitted on 20 Nov 2024]
Title:Cooperative quantum interface for noise mitigation in quantum networks
View PDF HTML (experimental)Abstract:Quantum frequency converters that enable the interface between the itinerant photons and qubits are indispensable for realizing long-distance quantum network. However, the cascaded connection between converters and qubits usually brings additional insertion loss and intermediate noises. Here, we propose a cooperative quantum interface (CQI) that integrates the converter and qubit coupling into a single device for efficient long-distance entanglement generation. Compared to traditional cascaded systems, our scheme offers several advantages, including compactness, reduced insertion loss, and suppression of noise from intermediate modes. We prove the excellent performance over the separated devices by about two orders of magnitude for the entangled infidelity of two remote nodes. Moreover, we discuss an extended scheme for multiple remote nodes, revealing an exponential advantage in performance as the number of nodes increases. The cooperative effect is universal that can be further applied to multifunctional integrated quantum devices. This work opens up novel prospects for quantum networks, distributed quantum computing, and sensing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.