Condensed Matter > Materials Science
[Submitted on 20 Nov 2024]
Title:Stacking-dependent ferroicity of reversed bilayer: altermagnetism or ferroelectricity
View PDFAbstract:Altermagnetism, as a new branch of magnetism independent of traditional ferromagnetism and antiferromagnetism, has attracted extensive attention recently. At present, researchers have proved several kinds of three-dimensional altermagnets, but research on two-dimensional (2D) altermagnets remains elusive. Here, we propose a method for designing altermagnetism in 2D lattices: bilayer reversed stacking. This method could enable altermagnetism-type spin splitting to occur intrinsically and the spin-splitting can be controlled by crystal chirality. We also demonstrate it through a real material of bilayer PtBr$_3$ with AB' stacking order. Additionally, the combination of stacking order and slidetronics offers new opportunities for electrical writing and magnetic reading of electronic devices. In the case of AC' stacking, interlayer sliding results in reversible spontaneous polarization. This unique combination of antiferromagnetism and sliding ferroelectricity leads to polarization-controlled spin-splitting, thus enabling magnetoelectric coupling, which can be detected by magneto-optical Kerr effect even without net magnetization. Our research highlights that reversed stacking provides a platform to explore rich physical properties of magnetism, ferroelectricity, and spin-splitting.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.