Mathematics > Numerical Analysis
[Submitted on 20 Nov 2024]
Title:Asymptotic-Preserving schemes for the Boltzmann mixture model with disparate mass
View PDF HTML (experimental)Abstract:In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations, under the so-called "relaxation time scale" relevant to the epochal relaxation phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and designing of efficient numerical schemes in order to capture the multi-scale nature of the dynamics. A direct implementation by using the spectral method faces prohibitive computational costs as the mass ratio decreases due to the need to resolve vastly different thermal velocities. Different from [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach by conducting asymptotic expansions for the collision operators, which can significantly reduce the computational complexity and works well for uniformly small $\varepsilon$. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that is able to capture the epochal relaxation phenomenon of disparage mass mixtures while maintaining the computational efficiency. Numerical experiments will demonstrate the effectiveness of our proposed scheme in handling large mass ratios of heavy and light species, in addition to validating the AP properties.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.