High Energy Physics - Phenomenology
[Submitted on 20 Nov 2024]
Title:Path-length dependence of parton and jet energy loss from universal scaling laws
View PDF HTML (experimental)Abstract:The universal dependence of hadron suppression, $R_{\rm{AA}}(p_\perp)$, observed at large-$p_\perp$ in heavy ion collisions at RHIC and LHC allows for a systematic determination of the average parton energy loss $\langle \epsilon \rangle$ in quark-gluon plasma (QGP). A simple relation between $\langle \epsilon \rangle$ and the soft particle multiplicity allows for probing the dependence of parton energy loss on the medium path-length. We find that all the available measurements are consistent with $\langle \epsilon \rangle \propto L^\beta$ with $\beta=1.02\pm^{0.09}_{0.06}$, consistent with the pQCD expectation of parton energy loss in a longitudinally expanding QGP. We then show, based on the model predictions, that the data on the azimuthal anisotropy coefficient divided by the collision eccentricity, $v_2/\rm{e}$, follows the same scaling property as $R_{\rm{AA}}$. Finally, a linear relationship between $v_2/\rm{e}$ and the logarithmic derivative of $R_{\rm{AA}}$ at large $p_\perp$ offers a purely data-driven access to the $L$ dependence of parton energy loss. Quite remarkably, both hadron and jet measurements obey this latter relationship, moreover with consistent values of $\beta$. This points to the same parametric path-length dependence of parton and jet energy loss in QGP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.