Quantum Physics
[Submitted on 20 Nov 2024]
Title:Multicomponent cat states with sub-Planck structures and their optomechanical analogues
View PDF HTML (experimental)Abstract:We investigate the superposition of coherent states, emphasizing quantum states with distinct Wigner phase-space features relevant to quantum information applications. In this study, we introduce generalized versions of the compass state, which display enhanced phase-space characteristics compared to the conventional compass state, typically a superposition of four coherent states. Our findings reveal that, unlike sub-Planck structures and phase-space sensitivity of the compass state, these generalized states produce isotropic sub-Planck structures and sensitivity to phase-space displacements. We demonstrate that these desirable phase-space characteristics are maintained in superpositions comprising at least six distinct coherent states. Furthermore, we show that increasing the number of coherent states in the superposition preserves these characteristics, provided the number remains even. Finally, we examine an optomechanical system capable of generating the proposed quantum states, resulting in optomechanical counterparts with nearly identical phase-space structures, thereby suggesting the feasibility of physically realizing these generalized compass states.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.