Astrophysics > Astrophysics of Galaxies
[Submitted on 20 Nov 2024]
Title:The Impact of Galaxy-halo Size Relations on Galaxy Clustering Signals
View PDF HTML (experimental)Abstract:Galaxies come in different sizes and morphologies, and these differences are thought to correlate with properties of their underlying dark matter halos. However, identifying the specific halo property that controls the galaxy size is a challenging task, especially because most halo properties are dependent on one another. In this work, we demonstrate this challenge by studying how the galaxy-halo size relations impact the galaxy clustering signals. We investigate the reason that a simple linear relation model, which prescribes that the galaxy size is linearly proportional to the dark matter halo's virial radius, can still produce clustering signals that match the observational data reasonably well. We find that this simple linear relation model for galaxy sizes, when combined with the subhalo abundance matching technique, introduces an implicit dependence on the halo formation history. As a result, the effect of halo assembly bias enters the resulting galaxy clustering, especially at lower stellar masses, producing a clustering signal that resembles the observed one. At higher stellar masses, the effect of halo assembly bias weakens and is partially canceled out by the effect of halo bias, and the clustering of large and small galaxies becomes more similar. Our study confirms that the information of halo formation history must play a role in determining galaxy sizes to match the observed clustering signals, but also highlights the challenge of identifying a particular halo property that controls galaxy sizes through constraints from galaxy clustering alone.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.