Nonlinear Sciences > Pattern Formation and Solitons
[Submitted on 21 Nov 2024]
Title:Breather bound states in a parametrically driven magnetic wire
View PDF HTML (experimental)Abstract:We report the results of systematic investigation of localized dynamical states in the model of a one-dimensional magnetic wire, which is based on the Landau-Lifshitz-Gilbert (LLG) equation. The dissipative term in the LLG equation is compensated by the parametric drive imposed by the external AC magnetic field, which is uniformly applied perpendicular to the rectilinear wire. The existence and stability of the localized states is studied in the plane of the relevant control parameters, viz., the amplitude of the driving term and the detuning of its frequency from the parametric resonance. With the help of systematically performed simulations of the LLG equation, existence and stability areas are identified in the parameter plane for several species of the localized states: stationary single- and two-soliton modes, single and double breathers, drifting double breathers with spontaneously broken inner symmetry, and multi-soliton complexes. Multistability occurs in this system. The breathers emit radiation waves (which explains their drift caused by the spontaneous symmetry breaking, as it breaks the balance between the recoil from the waves emitted to left and right), while the multi-soliton complexes exhibit cycles of periodic transitions between three-, five-, and seven-soliton configurations. Dynamical characteristics of the localized states are systematically calculated too. These include, in particular, the average velocity of the asymmetric drifting modes, and the largest Lyapunov exponent, whose negative and positive values imply that the intrinsic dynamics of the respective modes is regular or chaotic, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.