Physics > Optics
[Submitted on 21 Nov 2024]
Title:Engineering spectro-temporal light states with physics-trained deep learning
View PDF HTML (experimental)Abstract:Frequency synthesis and spectro-temporal control of optical wave packets are central to ultrafast science, with supercontinuum (SC) generation standing as one remarkable example. Through passive manipulation, femtosecond (fs) pulses from nJ-level lasers can be transformed into octave-spanning spectra, supporting few-cycle pulse outputs when coupled with external pulse compressors. While strategies such as machine learning have been applied to control the SC's central wavelength and bandwidth, their success has been limited by the nonlinearities and strong sensitivity to measurement noise. Here, we propose and demonstrate how a physics-trained convolutional neural network (P-CNN) can circumvent such challenges, showing few-fold speedups over the direct approaches. We highlight three key advancements enabled by the P-CNN approach: (i) on-demand control over spectral features of SC, (ii) direct generation of sub-3-cycle pulses from the highly nonlinear fiber, and (iii) the production of high-order solitons, capturing distinct "breather" dynamics in both spectral and temporal domains. This approach heralds a new era of arbitrary spectro-temporal state engineering, with transformative implications for ultrafast and quantum science.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.